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The purpose of the present work is to give a relatively simple treatment
of the following interpolation problem. Find a function which interpolates
given points and whose kth derivative is non-negative with minimal
L7-norm.

This and related problems have stimulated considerable interest in the
past decade and have been solved in special cases. Without the restriction
that the kth derivative be non-negative, the case p=oc is known as
Favard’s problem [1]. The constrained problem has been solved for k = 2,
p=2 by Hornung [2] and for k=2, | <p < o by Iliev and Pollul [3, 4].

We treat here the case k>2, 1 <p<oc, and our approach, although
traditional from the point of view of variational calculus, differs con-
siderably from the methods used in the above-mentioned work. With our
method it is also easy to treat the slightly more general case with a con-
straint of the form ¢(¢) <f'*)(t) <y(¢) for the interpolating function f.

I. PRELIMINARIES

Let [a, b] be an interval of R and let ¢, f,,..., 5, . be points of [a, h]
with a<t, <t,< - <ty,,<bh Here N and k are integers with N> 1,
k=2 Let y,, ¥3,., ¥y« be real numbers. For /=0, 1,2, k, the /th
divided differences of the set of data {(z,, y,); i=1, 2,.., N+ k} are denoted
by Al, i=1,2,., N+k—1 and defined recursively by

!
A=y, A/:—I(A’ b—aly  for =1

i i+1
ti+/

For a continuous function f on [a, #], the kth difference quotients
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Jltit,. st ] are defined as the kth divided differences of the data
L ), (s [y (s Sty 0))). Tt s easily seen that
St tiy v tin 1 =01f fis a polynomial of degree less than 4.

Let p be a real number with 1 <p < oc and let ¢ be its dual exponent:
1/p+1/g=1. W*"(a, b) is the Sobolev space of measurable functions on
[a, b], having kth order derivatives belonging to L”(a, b), i.e., W*?(a, b) =
{feC* '[a,b]; f* " is absolutely continuous, [# | f*1)|” dt < o). The
normalized B-splines M,,, i=1,2,.., N are defined by

Mi,k(t):g/\:l[ln ti+1""’ t,+/\]« where g,\._,(j'):/\'(S*T)’; :

and «a, is the positive part of the number a:a, =max(a, 0). Also ¢ . =
max(0, —a) will denote the negative part of a. For each ie {1,2,.., N}, M,
is then a non-negative function with support [1,¢.,,] and
2 M (1) de = k!

For fe W*"(a, b), the relation

) |
STxn v Xod = | 100 M) dr (1)

known as Peano’s theorem, now follows immediately from Taylor’s
theorem

ko1 gty)
fls)y=Y / vfa)

v 1 r (k) - d
(s—a) +EJ(,f (1) gi (s}dr

We introduce the class

F=1{fe Wr(a,b), f*'>0 and f(1;)=y;fori=1,2,.. N+ k)

and consider the problem

(P) Find fe F, minimizing [/ f*(1)” dt.
Using (1), it is easy to prove that the operator d*/dt* is a bijective mapping
of F onto the class

b
G= {geL”(a, by.g=0 andj g(YM,  (t)ydi=k! a¥fori=1,2.., N},

1

and thus problem (P) is equivalent to
(P') Find g e G, minimizing % g(¢)” dt.
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II. RESULTS

THEOREM 1.  Suppose that A*>0 for i=1,2,.., N and that the class F is
nonempty. Then problem (P) has a unique solution f, and there are real num-
bers a,, %s,..., A such that

N g1
./.(k)(,)=<z OC,M,;/((’)> a.e. in (a,b).

i=1 +

Moreover, there exists only one function f€ F with the property that f*)(t)=
N BM (), " for some real By, Pi... Py, namely the minimizing

function for problem (P).

Before proving this theorem we state an auxihiary result, the proof of
which is omitted.

LEMMA.  Let A be a measurable subset of a subinterval (¢, t;, ) and sup-
pose that | A|>0. Then the restrictions to A of the functions M, with
max(1,j+ 1 —k)<i<min(j, N) are linearly independent on A.

Proof of the Theorem. We consider the equivalent problem (P’). Since
G is a closed, convex, and nonempty subset of the strictly convex Banach
space L”(a, b), problem (P’) has a unique solution g. Put

E:{te(a,b);g(t)>0}', E=En(tytiiy)

and, for 6 >0,
E'={te(a byglt)>d},  EI=E"0 (1 t0)

We then have £,=J;., E? and, since 4¥ >0, | E,| >0 for i=1,2,.., N.

Let the positive number & be so small that | E?| >0 for i=1, 2,.., N. For
every ¢ € L™ (a, b) with supp ¢ = E° and [ (1) M, (1) dt =0, i=1,2,., N,
the function g + ¢p belongs to G if |e¢| < d/sup |¢|, and thus
(d/de) [0 (g(1) +ep(1)) dil,.o=0, ie, [P g(t)” ' o(t)dr=0. This implies
that the restriction of g7 ' to E° is a linear combination of the spline
functions

g)" 1= a(6) Mi(e),  reE

i=1

From the lemma it follows that the coefficients x,(0) are uniquely deter-
mined and thus, since E° increases with decreasing &, they are in fact
independent of &.

From this we conclude that
N

g()” "= a M, (1), teE

i=1
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or, equivalently,

N N 1

g([):)f/;(l)(z %’M,;A—(f)) . 1€(a,b)

il

where y . is the characteristic function of the set E.
We now want to show that the factor y,.(f) can be dropped, or,
equivalently, that | F\E| =0, where

N

F= {te (a,b); Y o, M (1)> O}.

i=1

Put y =y, ,. We again let § be so small that | E?| >0 for i=1,2,., N,
Then it is possible to find a function ¢ € L™ (a, b) with supp ¢ € E° and

Jh (@) + W) M (1) d1=0,  i=1,2,., N.

a

Now, if 0 <e < d/sup ¢ _, the function g + &(¢ + ) belongs to G, and mak-
ing the Euler variation as above with ¢ > 0+, we obtain

~h

| &0 o)+ () di =0,

a

N

j o(1) Y oc,-M,_k(t)dH—f 2(1)” 'di>0.
L‘O

= o
Now, since g(7)=0 on F\E, we get

~ R N

0<| o) Y a,M (1) dt= —J Y M (1) dt,
Fa

i=1 Rl oy
and since >, o, M, (¢) >0 on F\E, we conclude that | F\E| =0, and the
first part of the theorem is proved.

To prove the last statement in the theorem, suppose that g=/"%*'eG is
given with the property

g(1) :< Z ﬁiMi,k([)>
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for some constants ﬁl, Bz,..., Bn. Take E={1;g(1)>0}. Now let he G be

arbitrary Then {2 (h(t) — (1)) M (1) dt =0 for i=1,2,.. N Therefore
jb Z[AlﬂMlk dt O and _[I: g(t 1—1ﬂMtk( dt
+ Lub)\lz (h( ) — Z,N:1 B:M, (t)dt = 0. On E we have g(1)"~ =

>N B:M, (1) and out51de E we have

Consequently fE (h(t)—g(1)) g(t)* "' dt=0, and using Holder’s inequality
we obtain

~h b b 1—(1/p) b 1/p
| g(t)”dtgj g(z)/"h(z)dz<<j g(t)”dt> <f h(t)”dt)

12 a a a

which implies that [/ g(1)” dr < [* h(1)? dt, so g must be the uniquely deter-
mined minimizing function. This finishes the proof of Theorem 1.

Remark. The same technique applies if some of the A* are allowed to be
zero. In this case, if 4=0, g must vanish on (., ¢;, ), and a representation
like that in Theorem 1 is valid, where «; is finite if 4%>0 and o,= — oo if
4% =0.

Now Theorem 1 is easily generalized in the following manner. For given
measurable functions ¢ and ¢ with —ooc <@ <y < + 0 and

b b
[foa<w, [y (<o,

let us define

= {fe W""(a, b); (1) <f"(t) <W(r) and
flt)=y, for i=12, ., N+k}.

Consider the problem
(P,.,) Find fe F,, minimizing {* | f*)(1)|” dt.
We then have

THEOREM 2. Suppose that

[ o) M0y de <kt <[ p0) Myu0)

a
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Jori=1,2... Nand that the class F

: o 18 nOnempty. Then problem (P, ) has

a unique solution f. and there are real numbers ., o-,..., 2 such that

sgn( Y 1,@1,-*(!)), (p(l)]. w(r)}.

i=

N

S a, M (1)

i=1

/()= min {max [

Moreover, there exists only one function fe F_ , of this form.
. . . oy .

The proof, which is omitted, is obtained after only minor modifications
of the previous one.
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