Constrained Interpolants with Minimal $W^{k, p}$ - Norm

Lars-Erik Andersson and Per-Anders Ivert*
Department of Mathematics, Linköping University, S-581 83 Linköping, Sweden
Communicated by Jaak Peetre

Received April 9, 1985

The purpose of the present work is to give a relatively simple treatment of the following interpolation problem. Find a function which interpolates given points and whose k th derivative is non-negative with minimal L^{p}-norm.

This and related problems have stimulated considerable interest in the past decade and have been solved in special cases. Without the restriction that the k th derivative be non-negative, the case $p=\infty$ is known as Favard's problem [1]. The constrained problem has been solved for $k=2$, $p=2$ by Hornung [2] and for $k=2,1<p \leqslant \infty$ by Iliev and Pollul [3, 4].

We treat here the case $k \geqslant 2,1<p<\infty$, and our approach, although traditional from the point of view of variational calculus, differs considerably from the methods used in the above-mentioned work. With our method it is also easy to treat the slightly more general case with a constraint of the form $\varphi(t) \leqslant f^{(k)}(t) \leqslant \psi(t)$ for the interpolating function f.

I. Preliminaries

Let $[a, b]$ be an interval of \mathbb{R} and let $t_{1}, t_{2}, \ldots, t_{N+k}$ be points of $[a, b]$ with $a \leqslant t_{1}<t_{2}<\cdots<t_{N+k} \leqslant b$. Here N and k are integers with $N \geqslant 1$, $k \geqslant 2$. Let $y_{1}, y_{2}, \ldots, y_{N+k}$ be real numbers. For $l=0,1,2, \ldots, k$, the l th divided differences of the set of data $\left\{\left(t_{i}, y_{i}\right) ; i=1,2, \ldots, N+k\right\}$ are denoted by $\Delta_{i}^{l}, i=1,2, \ldots, N+k-l$, and defined recursively by

$$
\Delta_{i}^{0}=y_{i}, \quad \Delta_{i}^{\prime}=\frac{l}{t_{i+1}-t_{i}}\left(\Delta_{i+i}^{l}-\Delta_{i}^{l-1}\right) \quad \text { for } \quad l \geqslant 1 .
$$

For a continuous function f on $[a, b]$, the k th difference quotients

[^0]$f\left[t_{i}, t_{i+1}, \ldots, t_{i+k}\right]$ are defined as the k th divided differences of the data $\left\{\left(t_{1}, f\left(t_{1}\right)\right), \quad\left(t_{2}, f\left(t_{2}\right)\right), \ldots, \quad\left(t_{N+k}, f\left(t_{N+k}\right)\right)\right\}$. It is easily seen that $f\left[t_{i}, t_{i+1}, \ldots, t_{i+k}\right]=0$ if f is a polynomial of degree less than k.

Let p be a real number with $1<p<\infty$ and let q be its dual exponent: $1 / p+1 / q=1$. $W^{k, p}(a, b)$ is the Sobolev space of measurable functions on $[a, b]$, having k th order derivatives belonging to $L^{p}(a, b)$, i.e., $W^{k . p}(a, b)=$ $\left\{f \in C^{k} \quad[a, b] ; f^{(k-1)}\right.$ is absolutely continuous, $\left.\int_{a}^{b}\left|f^{(k)}(t)\right|^{p} d t<\infty\right\}$. The normalized B-splines $M_{i . k}, i=1,2, \ldots, N$ are defined by

$$
M_{i, k}(t)=g_{k, t}\left[t_{i}, t_{i+1}, \ldots, t_{i+k}\right], \quad \text { where } \quad g_{k, t}(s)=k(s-t)_{+}^{k} \quad 1
$$

and a_{+}is the positive part of the number $a: a_{+}=\max (a, 0)$. Also $a=$ $\max (0,-a)$ will denote the negative part of a. For each $i \in\{1,2, \ldots, N\}, M_{i, k}$ is then a non-negative function with support $\left[t_{i}, t_{i+k}\right]$ and $\int_{a}^{b} M_{i, k}(t) d t=k!$

For $f \in W^{k . p}(a, b)$, the relation

$$
\begin{equation*}
f\left[x_{i}, x_{i+1} \ldots x_{i+k}\right]=\frac{1}{k!} \int_{a}^{b} f^{(k)}(t) M_{i, k}(t) d t \tag{1}
\end{equation*}
$$

known as Peano's theorem, now follows immediately from Taylor's theorem

$$
f(s)=\sum_{v=0}^{k} \frac{f^{(w)}(a)}{v!}(s-a)^{v}+\frac{1}{k!} \int_{a}^{b} f^{(k)}(t) g_{k . t}(s) d t .
$$

We introduce the class

$$
F=\left\{f \in W^{k . p}(a, b) ; f^{(k)} \geqslant 0 \text { and } f\left(t_{i}\right)=y_{i} \text { for } i=1,2, \ldots, N+k\right\}
$$

and consider the problem
(P) Find $f \in F$, minimizing $\int_{a}^{b} f^{(k)}(t)^{p} d t$.

Using (1), it is easy to prove that the operator $d^{k} / d t^{k}$ is a bijective mapping of F onto the class

$$
G=\left\{g \in L^{p}(a, b) ; g \geqslant 0 \text { and } \int_{a}^{b} g(t) M_{i, k}(t) d t=k!A_{i}^{k} \text { for } i=1,2, \ldots, N\right\}
$$

and thus problem (P) is equivalent to
$\left(\mathrm{P}^{\prime}\right)$ Find $g \in G$, minimizing $\int_{a}^{b} g(t)^{p} d t$.

II. Results

Theorem 1. Suppose that $\Delta_{i}^{k}>0$ for $i=1,2, \ldots, N$ and that the class F is nonempty. Then problem (P) has a unique solution f, and there are real numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}$ such that

$$
f^{(k)}(t)=\left(\sum_{i=1}^{N} \alpha_{i} M_{i . k}(t)\right)_{+}^{4-1} \quad \text { a.e. in }(a, b)
$$

Moreover, there exists only one function $f \in F$ with the property that $f^{(k)}(t)=$ $\left(\sum_{i=1}^{N} \beta_{i} M_{i, k}(t)\right)_{+}^{4}{ }^{1}$ for some real $\beta_{1}, \beta_{2}, \ldots, \beta_{N}$, namely the minimizing function for prohlem (P).

Before proving this theorem we state an auxiliary result, the proof of which is omitted.

Lemma. Let A be a measurable subset of a subinterval $\left(t_{j}, t_{j+1}\right)$ and suppose that $|A|>0$. Then the restrictions to A of the functions $M_{i . k}$ with $\max (1, j+1-k) \leqslant i \leqslant \min (j, N)$ are linearly independent on A.

Proof of the Theorem. We consider the equivalent problem (P^{\prime}). Since G is a closed, convex, and nonempty subset of the strictly convex Banach space $L^{\prime \prime}(a, b)$, problem (P^{\prime}) has a unique solution g. Put

$$
E=\{t \in(a, b) ; g(t)>0\}, \quad E_{i}=E \cap\left(t_{i}, t_{i+k}\right)
$$

and, for $\delta>0$,

$$
E^{\delta}=\{t \in(a, b) ; g(t)>\delta\}, \quad E_{i}^{\delta}=E^{\delta} \cap\left(t_{i}, t_{i+k}\right)
$$

We then have $E_{i}=\bigcup_{\delta>0} E_{i}^{\delta}$ and, since $A_{i}^{k}>0,\left|E_{i}\right|>0$ for $i=1,2, \ldots, N$.
Let the positive number δ be so small that $\left|E_{i}^{\delta}\right|>0$ for $i=1,2, \ldots, N$. For every $\varphi \in L^{x}(a, b)$ with supp $\varphi \subset E^{j}$ and $\int_{a}^{b} \varphi(t) M_{i, k}(t) d t=0, i=1,2, \ldots, N$, the function $g+\varepsilon \varphi$ belongs to G if $|\varepsilon|<\delta / \sup |\varphi|$, and thus $\left.(d / d \varepsilon) \int_{a}^{b}(g(t)+\varepsilon \varphi(t))^{\prime \prime} d t\right|_{s=0}=0$, i.e., $\int_{a}^{h} g(t)^{p}{ }^{1} \varphi(t) d t=0$. This implies that the restriction of $g^{\prime \prime}{ }^{1}$ to E^{δ} is a linear combination of the spline functions

$$
g(t)^{p \cdots 1}=\sum_{i=1}^{N} \alpha_{i}(\delta) M_{i, k}(t), \quad t \in E^{\delta}
$$

From the lemma it follows that the coefficients $x_{i}(\delta)$ are uniquely determined and thus, since $E^{\dot{\delta}}$ increases with decreasing δ, they are in fact independent of δ.

From this we conclude that

$$
g(t)^{p \quad 1}=\sum_{i=1}^{N} \alpha_{i} M_{i, k}(t), \quad t \in E
$$

or, equivalently,

$$
g(t)=\chi_{t}(t)\left(\sum_{i=1}^{v} \alpha_{i} M_{i, k}(t)\right)_{+}^{4}, \quad t \in(a, b)
$$

where χ_{E} is the characteristic function of the set E.
We now want to show that the factor $\chi_{L}(t)$ can be dropped, or, equivalently, that $|F \backslash E|=0$, where

$$
F=\left\{t \in(a, b) ; \sum_{i=1}^{N} \alpha_{i} M_{i, k}(t)>0\right\} .
$$

Put $\psi=\chi_{F: E}$. We again let δ be so small that $\left|E_{i}^{\delta}\right|>0$ for $i=1,2, \ldots, N$. Then it is possible to find a function $\varphi \in L^{\infty}(a, b)$ with $\operatorname{supp} \varphi \in E^{\delta}$ and

$$
\int_{E^{\star}} \varphi(t) M_{i, k}(t) d t=-\int_{N_{N} E} M_{i, k}(t) d t
$$

i.e.,

$$
\int_{a}^{b}(\varphi(t)+\psi(t)) M_{i, k}(t) d t=0, \quad i=1,2, \ldots, N .
$$

Now, if $0<\varepsilon<\delta / \sup \varphi$, the function $g+\varepsilon(\varphi+\psi)$ belongs to G, and making the Euler variation as above with $\varepsilon \rightarrow 0+$, we obtain

$$
\int_{a}^{b} g(t)^{p} \quad 1(\varphi(t)+\psi(t)) d t \geqslant 0
$$

i.e.,

$$
\int_{L^{j}} \varphi(t) \sum_{i=1}^{N} \alpha_{i} M_{l, k}(t) d t+\int_{F E} g(t)^{p}{ }^{1} d t \geqslant 0
$$

Now, since $g(t)=0$ on $F \backslash E$, we get

$$
0 \leqslant \int_{E^{\mathfrak{s}}} \varphi(t) \sum_{i=1}^{N} x_{i} M_{i, k}(t) d t=-\int_{F \in E_{i=1}} \sum_{i=1}^{N} \alpha_{i} M_{i, k}(t) d t
$$

and since $\sum_{i=1}^{N} \alpha_{i} M_{i, k}(t)>0$ on $F \backslash E$, we conclude that $|F \backslash E|=0$, and the first part of the theorem is proved.

To prove the last statement in the theorem, suppose that $g=f^{(k)} \in G$ is given with the property

$$
g(t)=\left(\sum_{i=1}^{N} \beta_{i} M_{i, k}(t)\right)_{+}^{4}
$$

for some constants $\beta_{1}, \beta_{2}, \ldots, \beta_{N}$. Take $E=\{t ; g(t)>0\}$. Now let $h \in G$ be arbitrary. Then $\int_{a}^{b}(h(t)-g(t)) M_{i, k}(t) d t=0$ for $i=1,2, \ldots, N$. Therefore $\int_{a}^{b}(h(t)-g(t)) \sum_{i=1}^{N} \beta_{i} M_{i, k}(t) d t=0$, and $\int_{E}(h(t)-g(t)) \sum_{i=1}^{N} \beta_{i} M_{i, k}(t) d t$ $+\int_{(a . b) \backslash E}\left(h(t)-g(t) \sum_{i=1}^{N} \beta_{i} M_{i, k}(t) d t=0\right.$. On E we have $g(t)^{p-1}=$ $\sum_{i=1}^{N} \beta_{i} M_{i, k}(t)$ and outside E we have

$$
h(t)-g(t)=h(t) \geqslant 0 \text { and } \sum_{i=1}^{N} \beta_{i} M_{i, k}(t) \leqslant 0 .
$$

Consequently $\int_{E}(h(t)-g(t)) g(t)^{p \cdots 1} d t \geqslant 0$, and using Hölder's inequality we obtain

$$
\int_{a}^{b} g(t)^{p} d t \leqslant \int_{a}^{b} g(t)^{p-1} h(t) d t \leqslant\left(\int_{a}^{b} g(t)^{p} d t\right)^{1-(1 / p)}\left(\int_{a}^{b} h(t)^{p} d t\right)^{1 / p}
$$

which implies that $\int_{a}^{b} g(t)^{p} d t \leqslant \int_{a}^{b} h(t)^{p} d t$, so g must be the uniquely determined minimizing function. This finishes the proof of Theorem 1.

Remark. The same technique applies if some of the Δ_{i}^{k} are allowed to be zero. In this case, if $\Delta_{i}^{k}=0, g$ must vanish on $\left(t_{i}, t_{i+k}\right)$, and a representation like that in Theorem 1 is valid, where α_{i} is finite if $\Delta_{i}^{k}>0$ and $\alpha_{i}=-\infty$ if $\Delta_{i}^{k}=0$.

Now Theorem 1 is easily generalized in the following manner. For given measurable functions φ and ψ with $-\infty \leqslant \varphi \leqslant \psi \leqslant+\infty$ and

$$
\int_{a}^{b} \varphi_{+}(t) d t<\infty, \quad \int_{a}^{b} \psi_{-}(t) d t<\infty
$$

let us define

$$
\begin{gathered}
F_{\varphi \cdot \psi}=\left\{f \in W^{k \cdot p}(a, b) ; \varphi(t) \leqslant f^{(k)}(t) \leqslant \psi(t)\right. \text { and } \\
\left.f\left(t_{i}\right)=y_{i} \text { for } i=1,2, \ldots, N+k\right\} .
\end{gathered}
$$

Consider the problem
($\mathrm{P}_{\varphi, \psi}$) Find $f \in F_{\varphi, \psi}$ minimizing $\int_{a}^{b}\left|f^{(k)}(t)\right|^{p} d t$.
We then have

Theorem 2. Suppose that

$$
\int_{a}^{b} \varphi(t) M_{i, k}(t) d t<k!\Delta_{i}^{k}<\int_{a}^{b} \psi(t) M_{i, k}(t) d t
$$

for $i=1,2, \ldots, N$ and that the class $F_{6, \psi}$ is nonempty. Then problem $\left(\mathrm{P}_{a, \psi}\right)$ has a unique solution f. and there are real numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{5}$ such that

$$
f^{(k)}(t)=\min \left\{\max \left[\left|\sum_{i=1}^{\nu} x_{i} M_{i, k}(t)\right|^{\mid t} \operatorname{sgn}\left(\sum_{i=1}^{v} x_{i} M_{i, k}(t)\right), \varphi(t)\right], \psi(t)\right\} .
$$

Moreover, there exists only one function $f \in F_{\varphi, \psi}$ of this form.
The proof, which is omitted, is obtained after only minor modifications of the previous one.

References

1. J. Favard, Sur l'interpolation, J. Math. Pures Appl. 19 (1940), 281-306.
2. U. Hornung. Interpolation by smooth functions under restrictions on the derivatives, J. Approx: Theory 28 (1980), 227-237.
3. G. L. llify and W. Pollll, Convex interpolation with minimal L, norm of the second derivative, Math. Z. 186 (1984), 49-56.
4. G. L. Ilifv, and W. Pollul, "Convex Interpolation by Functions with Minimal L_{p}-norm $(1<p<x)$ of the k th Derivative," Sonderforschungsbereich, p. 72, Universität Bonn Preprint No. 665.

[^0]: * Partially supported by the Swedish Natural Science Research Council (NFR).

